Prime power degree representations of the symmetric and alternating groups
نویسندگان
چکیده
In 1998, the second author raised the problem of classifying the irreducible characters of Sn of prime power degree. Zalesskii proposed the analogous problem for quasi-simple groups, and he has, in joint work with Malle, made substantial progress on this latter problem. With the exception of the alternating groups and their double covers, their work provides a complete solution. In this article we first classify all the irreducible characters of Sn of prime power degree (Theorem 2.4), and then we deduce the corresponding classification for the alternating groups (Theorem 5.1), thus providing the answer for one of the two remaining families in Zalesskii’s problem. This classification has another application in group theory. With it, we are able to answer, for alternating groups, a question of Huppert: Which simple groups G have the property that there is a prime p for which G has an irreducible character of p-power degree > 1 and all of the irreducible characters of G have degrees that are relatively prime to p or are powers of p?
منابع مشابه
A characterization of the symmetric group of prime degree
Let $G$ be a finite group and $Gamma(G)$ the prime graph of $G$. Recently people have been using prime graphs to study simple groups. Naturally we pose a question: can we use prime graphs to study almost simple groups or non-simple groups? In this paper some results in this respect are obtained and as follows: $Gcong S_p$ if and only if $|G|=|S_p|$ and $Gamma(G)=Gamma(S_p)$, whe...
متن کاملComplex Group Algebras of the Double Covers of the Symmetric and Alternating Groups
We prove that the double covers of the alternating and symmetric groups are determined by their complex group algebras. To be more precise, let n ≥ 5 be an integer, G a finite group, and let Ân and Ŝ ± n denote the double covers of An and Sn, respectively. We prove that CG ∼= CÂn if and only if G ∼= Ân, and CG ∼= CŜ + n ∼= CŜ − n if and only if G ∼= Ŝ + n or Ŝ − n . This in particular completes...
متن کاملGroups with Two Extreme Character Degrees and their Minimal Faithful Representations
for a finite group G, we denote by p(G) the minimal degree of faithful permutation representations of G, and denote by c(G), the minimal degree of faithful representation of G by quasi-permutation matrices over the complex field C. In this paper we will assume that, G is a p-group of exponent p and class 2, where p is prime and cd(G) = {1, |G : Z(G)|^1/2}. Then we will s...
متن کاملIRREDUCIBLE REPRESENTATIONS OF SU(n) WITH PRIME POWER DEGREE
The correspondence between irreducible representations of the symmetric group Sn and partitions of n is well-known. Less well-known is the connection between irreducible representations of the special unitary group SU(n) and partitions with less than n parts. This paper uses this correspondence to classify the irreducible representations of SU(n) with prime power degree.
متن کاملSimple groups with the same prime graph as $D_n(q)$
Vasil'ev posed Problem 16.26 in [The Kourovka Notebook: Unsolved Problems in Group Theory, 16th ed.,Sobolev Inst. Math., Novosibirsk (2006).] as follows:Does there exist a positive integer $k$ such that there are no $k$ pairwise nonisomorphicnonabelian finite simple groups with the same graphs of primes? Conjecture: $k = 5$.In [Zvezdina, On nonabelian simple groups having the same prime graph a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000